
BOK 2011 Page 1

Computing:

A curriculum for schools
 Computing at School Working Group

http://www.computingatschool.org.uk

endorsed by Microsoft and Google

December 2011

(c) Copyright 2011 Computing At School.

This work is licensed under the Creative Commons Attribution-NonCommercial

license; see http://creativecommons.org/licenses/by-nc/3.0/ for details

BOK 2011 Page 2

Foreword

The Computing at School Working Group1 believes that Computing is a discipline
that, like maths or history, every student should meet at school. The current

state of affairs is very different, as we argue in “Computing at school: the state
of the nation”2.

If Computing should be taught at school we must answer the question “just what
is Computing, viewed as a school subject?”. Answering that question is the
purpose of this document.

Structure and focus

This curriculum is modelled directly on the UK National Curriculum Programmes

of Study3, in the hope that it may thereby have a familiar “shape”:

• Section 1: Importance. Why should Computing be learned at school?

• Section 2: Key Concepts that arise again and again in Computing.

• Section 3: Key Processes. What students should be able to do.

• Section 4: Range and Content. What students should know.

• Section 5: Level descriptions maps Computing attainment to UK
National Curriculum levels.

Because the material is less familiar we have taken space for explanation and

examples, so the result is much longer than a typical National Curriculum
subject specification.

This document identifies the enduring principles rather than current hot topics,
so there is little mention of mobile phones, the cloud, or social networking.
These topics are important, and are very likely to play an important role in the

effective delivery of Computing lessons, but they will change from year to year
and so not the basis for a enduring curriculum.

The purpose of this curriculum is to articulate what the Computing discipline is,
rather than how it should be taught. A companion document, “Delivering a
Computing curriculum” addresses the latter question.

Scope

Computing is so important (see Section 1) that:

• Every child at KS2 and KS3 should have the opportunity to learn material
that is recognisably “Computing”.

• Every child should have the opportunity to take a GCSE in Computing at

KS4.

• Computational ideas inform and illuminate other disciplines, and this

should be reflected in the teaching of these disciplines at school. Like

1 http://www.computingatschool.org.uk/
2 http://www.computingatschool.org.uk/data/uploads/CAS_UKCRC_report.pdf
3 http://curriculum.qcda.gov.uk/key-stages-3-and-4/subjects/key-stage-3/

BOK 2011 Page 3

numeracy and literacy there is a cognitive strand of computing that offers
valuable thinking skills to learners of all ages (e.g. algorithm, logic,

visualisation, precision, abstraction).

Most of the document is generic to Computing at school level, from primary (Key

Stage 1, 2) to secondary (Key Stage 3, 4), and beyond. However, Section 4
(Range and Content) focuses primarily on Key Stages 3 and 4. A future revision
will extend coverage to include Key Stages 1 and 2.

Key stages

Here is a key for those unfamiliar with educational jargon in England:

• Key Stage 1 (ages 5-8)

• Key Stage 2 (ages 8-11)

• Key Stage 3 (ages 11-14). The transition from primary to secondary

school typically takes place at the start of KS3.

• Key Stage 4 (ages 14-16) leads up to the national GCSE examinations,

and a variety of vocational equivalents

• Post-16 education includes A-level examinations, which are the main
university entrance qualification.

The Computing at School Working Group

This document is a working document of the Computing at School Working

Group (http://www.computingatschool.org.uk).

Kevin Bond (AQA)

Quintin Cutts (University of Glasgow)
Roger Davies (Queen Elizabeth School, Kirkby Lonsdale)
Mark Dorling (Langley Grammar School and Digital Schoolhouse project)

Stephen Hunt (University of Hertfordshire)
Jack Lang (University of Cambridge)

Adam McNicol (Long Road Sixth Form College, Cambridge)
Simon Peyton Jones (Microsoft Research, Cambridge)
Shahneila Saeed (Graveney School, London)

John Woollard (University of Southampton)
Emma Wright (Harvey Grammar School, Folkestone)

Contact: Simon Peyton Jones (simonpj@microsoft.com)

BOK 2011 Page 4

Microsoft

Microsoft has built its business on the knowledge and skills of our talented

computer scientists and we therefore fully support the aims of the Computing at
School Working Group (CAS). We were a foundation member and we promote
their mission through all our networks and blogs. We see the Curriculum for

Computing developed by CAS as providing a solid foundation for teaching the
principles and concepts of computer science in a creative and animated way.

This will help deliver the capabilities and experience which Microsoft needs for
our workforce and our SME partners. This is particularly important because there

is currently a shortage of people with the right Computer Science expertise in
the UK.

Computer science is not just good for the economy, it is fun and it gives young

people huge opportunities in life. For example, Kodu our visual programming
language made specifically for creating games allows children to design games

in an accessible manner. At university level, Microsoft’s Imagine Cup world’s
premier student technology competition gives students the opportunity to solve
tough problems facing the world today, and maybe even turn their ideas into a

business. Furthermore, Microsoft is also supporting Computer Science teachers
with resources through the ‘Partners in Learning’ scheme and our Dreamspark

programme provides professional-level developer and design tools to students
and educators around the world at no charge.

CAS and its partners including Microsoft are confident that they can support the

expansion of Computer Science and we would like to see Government encourage
schools to adopt it.

Google

As a company and as individual engineers, we at Google feel strongly that it is
important that all schoolchildren get both a solid grounding in computational

thinking and an opportunity to explore the fundamental skills and concepts that
underpin Computing and Software Engineering. In particular, we believe every
child should have exposure to and experience of the joy of programming, and

specifically of engineering new things (out of software, physical materials or a
blend of the two) to complement their education in Mathematics, Science,

English, Music, Art, Languages and other core subjects that will shape their
future career and life choices.

There are multiple ways to achieve this, and Google continues to support a

range of approaches, through our CS4HS scheme which funds Universities
working with schools and through our support for relevant technologies and

tools, such as Greenfoot. We directly and indirectly support the work of CAS in
these areas, and view this example Curriculum for Computing as a useful and
relevant contribution, describing important computing principles and

concepts. We hope this will prove to be of widespread value in schools across
the UK and beyond. We encourage schools to look at the CAS curriculum and

consider it as one possible way to improve their provision in this topic area.

BOK 2011 Page 5

1. Importance

Computing4 is the study of principles and practices that underpin an
understanding and modelling of computation, and of their application in the

development of computer systems. At its heart lies the notion of computational
thinking: a mode of thought that goes well beyond software and hardware, and

that provides a framework within which to reason about systems and problems.
This mode of thinking is supported and complemented by a substantial body of
theoretical and practical knowledge, and by a set of powerful techniques for

analysing, modelling and solving problems.

Computing is deeply concerned with how computers and computer systems

work, and how they are designed and programmed. Pupils studying computing
gain insight into computational systems of all kinds, whether or not they include
computers. Computational thinking influences fields such as biology, chemistry,

linguistics, psychology, economics and statistics. It allows us to solve problems,
design systems and understand the power and limits of human and machine

intelligence. It is a skill that empowers, and that all students should be aware of
and have some competence in. Furthermore, pupils who can think
computationally are better able to conceptualise and understand computer-

based technology, and so are better equipped to function in modern society.

Computing is a practical subject, where invention and resourcefulness are

encouraged. Pupils are expected to apply the academic principles they have
learned to the understanding of real-world systems, and to the creation of
purposeful artefacts. This combination of principles, practice, and invention

makes it an extraordinarily useful and an intensely creative subject, suffused
with excitement, both visceral (“it works!”) and intellectual (“that is so

beautiful”).

1.1 Computing is a discipline

Education enhances pupils’ lives as well as their life skills. It prepares young
people for a world that doesn’t yet exist, involving technologies that have not

yet been invented, and that present technical and ethical challenges of which we
are not yet aware.

To do this, education aspires primarily to teach disciplines with long-term value,

rather than skills with short-term usefulness, although the latter are certainly
useful. A “discipline” is characterised by:

• A body of knowledge, including widely-applicable ideas and concepts,
and a theoretical framework into which these ideas and concepts fit.

• A set of techniques and methods that may be applied in the solution of

problems, and in the advancement of knowledge.

4 We use the term “Computing” because that is the term used by UK school teachers. A

university lecturer would use the term “Computer Science”. If you are more familiar

with the latter, simply substitute “Computer Science” every time you read “Computing”.

BOK 2011 Page 6

• A way of thinking and working that provides a perspective on the
world that is distinct from other disciplines.

• Longevity: a discipline does not “date” quickly, although the subject
advances.

• Independence from specific technologies, especially those that have
a short shelf-life.

Computing is a discipline with all of these characteristics. It encompasses

foundational principles (such as the theory of computation) and widely applicable
ideas and concepts (such as the use of relational models to capture structure in

data). It incorporates techniques and methods for solving problems and
advancing knowledge (such as abstraction and logical reasoning), and a distinct
way of thinking and working that sets it apart from other disciplines

(computational thinking). It has longevity (most of the ideas and concepts that
were current 20 or more years ago are still applicable today), and every core

principle can be taught or illustrated without relying on the use of a specific
technology.

1.2 Computing is a STEM discipline

Computing is a quintessential STEM discipline, sharing attributes with

Engineering, Mathematics, Science, and Technology:

• It has its own theoretical foundations and mathematical underpinnings,
and involves the application of logic and reasoning.

• It embraces a scientific approach to measurement and experiment.

• It involves the design, construction, and testing of purposeful artefacts.

• It requires understanding, appreciation, and application of a wide range of
technologies.

Moreover, Computing provides students with insights into other STEM
disciplines, and with skills and knowledge that can be applied to the solution of
problems in those disciplines.

Although they are invisible and intangible, software systems are among the
largest and most complex artefacts ever created by human beings. The

marriage between software and hardware that is necessary to realize computer-
based systems increases the level of complexity, and the complex web of inter-
relationships between different systems increases it yet further. Understanding

this complexity and bringing it under control is the central challenge of our
discipline. In a world where computer-based systems have become all-

pervasive, those individuals and societies that are best equipped to meet this
challenge will have a competitive edge.

The combination of computational thinking, a set of computing principles, and a

computational approach to problem solving is uniquely empowering. The ability
to bring this combination to bear on practical problems is central to the success

of science, engineering, business and commerce in the 21st century.

BOK 2011 Page 7

1.3 Computing and ICT are complementary, but they are not the same

Computing and ICT are complementary subjects. Computing teaches a student
how to be an effective author of computational tools (i.e. software), while ICT

teaches how to be a thoughtful user of those tools. This neat juxtaposition is
only part of the truth, because it focuses too narrowly on computers as a

technology, and computing is much broader than that. As Dijkstra famously
remarked, “Computing is no more about computers than astronomy is about

telescopes”. More specifically:

• Computing is a discipline that seeks to understand and explore the world
around us, both natural and artificial, in computational terms. Computing

is particularly, but by no means exclusively, concerned with the study,
design, and implementation of computer systems, and the principles

underlying these designs.

• ICT deals with the purposeful application of computer systems to solve
real-world problems, including issues such as the identification of business

needs, the specification and installation of hardware and software, and the
evaluation of usability.

We want our children to understand and play an active role in the digital world
that surrounds them, not to be passive consumers of an opaque and mysterious
technology. A sound understanding of computing concepts will help them see

how to get the best from the systems they use, and how to solve problems when
things go wrong. Moreover, citizens able to think in computational terms would

be able to understand and rationally argue about issues involving computation,
such as software patents, identity theft, genetic engineering, electronic voting
systems for elections, and so on. In a world suffused by computation, every

school-leaver should have an understanding of computing.

BOK 2011 Page 8

2. Key concepts

A number of key concepts arise repeatedly in computing. They are grouped here
under

• Languages, machines, and computation
• Data and representation

• Communication and coordination
• Abstraction and design
• The wider context of computers.

It would not be sensible to teach these concepts as discrete topics in their own
right. Rather, they constitute unifying themes that can be used as a way to

understand and organise computing knowledge, and are more easily recognised
by students after they have encountered several concrete examples of the
concept in action.

2.1 Languages, machines, and computation

Computers get things done by a “machine” executing a “program”, written in
some language.

• Languages. There is a huge range of programming languages, ranging

from the machine code that the hardware executes directly, to high-level
programming languages such as Java or C++. In principle any

computation can be expressed in any language, but in practice the choice
of language is often influenced by the problem to be solved. Indeed, there
are many special-purpose (or “domain specific”) languages, such as SQL or

Excel’s formula language, designed for a particular class of applications.

Unlike human languages, programming languages are necessarily very

precise.

• Algorithms. An algorithm is a precise method of solving a problem.
Algorithms range from the simple (such as instructions for changing a

wheel on a car) to the ingenious (such as route-finding), and cover many
different application areas (for example, drawing three-dimensional

graphics; solving systems of constraints, such as a school timetable;
understanding images; numerical simulation, and so on). A single
algorithm can be expressed as a program in many different programming

languages.

• Machines. The most obvious “machine” is the hardware CPU, but many

software layers implement virtual machines, an engine that to the layer
above looks like a device for executing programs. Examples include
hypervisors, the Java Virtual Machine, and programming environments such

as Scratch.

• Computational models. A sequential “program” executes one step at a

time, but that is not the only model of computation. Others include parallel
computation, and the emergent behaviour of large numbers of simple

agents (e.g. the way in which flocks of very simple automata can have
unexpected collective behaviour).

BOK 2011 Page 9

2.2 Data and representation.

Much of the power of computers comes from their ability to store and
manipulate very large quantities of data. The way in which this data is stored

and manipulated can make enormous differences to the speed, robustness, and
security of a computer system. This area of computing includes

• How data is represented using bit patterns: including numbers, text,

music, pictures.

• How data is stored and transmitted, including

o Redundancy, error checking, error correction

o Data compression and information theory

o Encryption

• How data is organised, for example in data structures; or in databases.

2.3 Communication and coordination.

Nowadays computers are often thought of primarily as communication devices: a
mobile phone computes in order to communicate. The design and

implementation of these communications systems is a recurrent theme in
computing:

• Many programs are really reactive processes, that perform actions in
response to events. For example, a web server receives a request for a
page from the network, and then sends back a response containing the

webpage. Such processes may run forever, and may (by design) behave
differently on different runs.

• Networked computers communicate and cooperate using standardised
protocols, such as TCP/IP or HTTP.

• These protocols may support packet switching and routing (to get a

message to its destination), authentication (proving who you are),
privacy (keeping a conversation private to the participants), and

anonymity.

• The Internet is a particular realisation of a network.

• Distributed algorithms allow computers to cooperate in the presence of

network failures and even malicious agents.

2.4 Abstraction and design

Computers are very simple machines. They gain their power through scale: by
executing instructions extremely quickly, and by manipulating lots of data. This

scale makes it all too easy to construct computer systems that no one can
understand. Abstraction is the main mechanism we use to control complexity:

hiding a complicated implementation (“how it works”) behind a simple interface
(“what it does”). Modular design, and powerful abstraction shows up

everywhere in computing. For example:

• Computer hardware consists of complex boxes interacting through well-
defined interfaces (a network cable, a CPU socket, a SATA disk interface).

• All software is built from layers of abstraction. For example: a procedure
(or method, or library) implements a specification, but hides its

BOK 2011 Page 10

implementation; an operating system provides facilities to programs but
hides the complex implementation; a database implements SQL queries,

but hides how the data is stored.

• Simulation and modelling. Scientists, business people, and financial

analysts all use computers to model the real world, by abstracting away
unnecessary detail and using a computer program to simulate (what they
hope is) the essence of the problem.

2.5 Computers are part of a wider context

• Computer systems have a profound impact on the society we live in, and
computational thinking offers a new “lens” through which to look at
ourselves and our world. The themes here are very open-ended, taking the

form of questions that a thoughtful person might debate, rather than
answers that a clever person might know.Intelligence and

consciousness. Computing is about more than computers. Computing
opens up philosophical questions such as: can a machine be intelligent?
...be conscious? ...be a person?

• The natural world. Computing gives us a way of looking at the living
world, ranging from using computers to model the real world (e.g.

simulations of animal populations) to thinking of the living world in directly
computational terms (e.g. the “program” that is encoded by DNA).

• Creativity. Games, online experiences, movies, gallery installations and

performing arts are all transformed by computing. Should artistic ways of
working be integrated with computational thinking?

• Privacy. As our world becomes more interconnected, is there any hope of
privacy? Is it even desirable?

• Intellectual property. Should software be patentable? What is the role
of open source software?

BOK 2011 Page 11

•

3. Key processes: computational thinking

A “key process” is something that a student of Computing should be able to do;

Section 4 deals with what a student should know.

In Computing, the key processes can be unified by a single theme:
computational thinking. Computational thinking is the process of recognising

aspects of computation in the world that surrounds us, and applying tools and
techniques from computing to understand and reason about both natural and

artificial systems and processes.

Computational thinking is something that people do (rather than computers),

and includes the ability to think logically, algorithmically and (at higher levels)
recursively and abstractly. It is, however, a rather broad term. The rest of this
section draws out particular aspects of computational thinking that are

particularly accessible to, and important for, young people at school.

A well-rounded student of computing will also be proficient in other generic skills

and processes, including: thinking critically, reflecting on ones work and that of
others, communicating effectively both orally and in writing, being a responsible
user of computers, and contributing actively to society.

3.1 Abstraction: modelling, decomposing, and generalising

A key challenge in computational thinking is the scale and complexity of the
systems we study or build. The main technique used to manage this complexity
is abstraction5. The process of abstraction takes many specific forms, such as

modelling, decomposing, and generalising. In each case, complexity is dealt
with by hiding complicated details behind a simple abstraction, or model, of the

situation. For example,

• The London Underground map is a simple model of a complex reality —
but it is a model that contains precisely the information necessary to plan

a route from one station to another.

• A procedure to compute square roots hides a complicated implementation

(iterative approximation to the root, handling special cases) behind a
simple interface (give me a number and I will return its square root).

Computational thinking values elegance, simplicity, and modularity over ad-hoc

complexity.

Modelling

Modelling is the process of developing a representation of a real world problem,
system, or situation, that captures the aspects of the situation that are
important for a particular purpose, while omitting everything else. Examples:

London Underground map; storyboards for animations; a web page transition
diagram; the position, mass, and velocity of planets orbiting one another.

5 Somewhat confusingly, in computing the term “abstraction” is used both as a verb (a

process, described here), and as a noun (a concept, described in Section 3.4).

BOK 2011 Page 12

Different purposes need different models. Example: a geographical map of the
Underground is more appropriate for computing travel times than the well-

known topological Underground map; a network of nodes and edges can be
represented as a picture, or as a table of numbers.

A particular situation may need more than one model. Example: a web page
has a structural model (headings, lists, paragraphs), and a style model (how a
heading is displayed, how lists are displayed). A browser combines information

from both models as it renders the web page.

Decomposing

A problem can often be solved by decomposing it into sub-problems, solving
them, and composing the solutions together to solve the original problem. For
example “Make breakfast” can be broken down into “Make toast; make tea; boil

egg”. Each of these in turn can be decomposed, so the process is naturally
recursive.

The organisation of data can also be decomposed. For example, the data
representing the population of a country can be decomposed into entities such
as individuals, occupations, places of residence, etc.

Sometimes this top-down approach is the way in which the solution is
developed; but it can also be a helpful way of understanding a solution

regardless how it was developed in the first place. For example, an architectural
block diagram showing the major components of a system (e.g. a client, a

server, and a network), and how they communicate with each other, can be a
very helpful way of understanding a system.

Generalising and classifying

Complexity is often avoided by generalising specific examples, to make explicit
what is shared between the examples and what is different about them. For

example, having written a procedure to draw a square of size 3 and another to
draw a square of size 5, one might generalise to a procedure to draw a square of
any size N, and call that procedure with parameters 3 and 5 respectively. In this

way much of the code can be written once, debugged once, documented once,
and (most important) understood once.

A different example is the classification encouraged by object-oriented
languages, whereby a parent class expresses the common features of an object
(its size and colour, say), while the sub-classes express the distinct features (a

square and a triangle, perhaps).

Generalisation is the process of recognising these common patterns, and using

them to control complexity by sharing common features.

3.2 Programming

Computing is more than programming, but programming is an absolutely central
process for Computing. In an educational context, programming encourages

creativity, logical thought, and precision, and helps foster the personal, learning
and problem-solving skills required in the modern school curriculum.
Programming gives concrete, tangible form to the idea of “abstraction”, and

repeatedly shows how useful it is.

BOK 2011 Page 13

Designing and writing programs

Every student should have repeated opportunities to design, write, run,

and debug, an executable program. What an “executable program” means
can range widely, depending on the level of the student and the amount of time

available. For example, all of the following are included in “programming”:

• Small domain-specific languages, such as instructions to a simple robot,
or Logo-style turtle.

• Visual languages such as Scratch BYOB or Kodu.

• Text-based languages, such as C#, C++, Java, Pascal, PHP, Python,

Visual Basic, and so on.

• Scripting languages, such as shell scripts, Flash ActionScript, or
JavaScript.

• Spreadsheet formulae

Both interpreted and compiled languages are “executable”.

In every case the underlying concepts are more important than the particular
programming language. Moreover, the ability to understand and explain a
program is much more important than the ability to produce working but

incomprehensible code.

Depending on level, students should be able to:

• Design and write programs that include

o Sequencing: doing one step after another.

o Choice (if-then-else): doing either one thing or another.

o Iteration (loops): doing something repeatedly.

o Language constructs that support abstraction: wrapping up a

computation in a named abstraction, so that it can be re-used.
(The most common form of abstraction is the notion of a

“procedure” or “function” with parameters.)

o Some form of interaction with the program’s environment, such as
input/output, or event-based programming.

• Find and correct errors in their code

• Reflect thoughtfully on their program, including assessing its correctness

and fitness for purpose; understanding its efficiency; and describing the
system to others.

Abstraction mechanisms

Effective use of the abstraction mechanisms supported by programming
languages (functions, procedures, classes, and so on) is central to managing the

complexity of large programs. For example, a procedure supports abstraction by
hiding the complex details of an implementation behind a simple interface.

These abstractions may be deeply nested, layer upon layer. Example: a

procedure to draw a square calls a procedure to draw a line; a procedure to
draw a line calls a procedure to paint a pixel; the procedure to paint a pixel calls

a procedure to calculate a memory address from an (x,y) pixel coordinate.

As well as using procedures and libraries built by others, students should
become proficient in creating new abstractions of their own. A typical process is

BOK 2011 Page 14

• Recognise that one is writing more or less the same code repeatedly.
Example: draw a square of size 3; draw a square of size 7.

• Designing a procedure that generalises these instances. Example: draw a
square of size N.

• Replace the instances with calls to the procedure.

At a higher level, recognising a standard “design pattern”, and re-using existing
solutions, is a key process. For example:

• Simple data structures, such as variables, records, arrays, lists, trees,
hash tables.

• Higher level design patterns: divide and conquer, pipelining, caching,
sorting, searching, backtracking, recursion, client/server,
model/view/controller.

Debugging, testing, and reasoning about programs

When a computer system goes wrong, how can I fix it? Computers can be so

opaque that fault-finding degenerates into a demoralising process of trying
randomly generated “solutions” until something works. Programming gives
students the opportunity to develop systematic debugging and testing skills,

including:

• Reading the manual (of a program library, say)

• Describing to another student why the code should work.

• Manually executing code, perhaps using pencil and paper.

• Isolating or localising faults by adding tracing or profiling code to give
more visibility on what is going on

• Adding error checking code to check internal consistency, such as “Here x

should be greater than zero”.

• Writing and executing test cases.

Note: in Key Stages 2-4 we do not recommend significant attention to software
development processes (requirements analysis, specification, documentation,
test plans etc). These are very important topics for students who specialise in

the subject, but they are hard to motivate for very small scale projects, and they
tend to obscure or dominate the other teaching goals.

BOK 2011 Page 15

4. Range and content: what a student should know

This section says what a student should know by the end of Key Stage 3 (age
14) and Key Stage 4 (age 16). It should not be read as a statement of how the
subject should be taught; simply as a summary of what a student should know.

What can actually be taught at (say) Key Stage 3 depends on how much
curriculum time is available, and that will vary from school to school, and with

changes in educational policy. Rather than prejudge this issue, this curriculum
focuses on age-appropriate material; that is, the Key Stage 3 material should be
comprehensible to a Key Stage 3 student. Almost certainly not all of it will fit,

and teachers will need to select material from the range offered here.

At Key Stage 4, much of the content identified for KS3 should be re-visited, but

at greater depth.

Examples and text in [square brackets] are intended as illustrative, not

prescriptive. Material marked (**) is more advanced.

4.1 Algorithms

A student should understand what an algorithm is, and what algorithms can be
used for.

KS3

• An algorithm is a sequence of precise steps to solve a given problem

• A single problem may be solved by several different algorithms

• The choice of an algorithm to solve a problem is driven by what is required
of the solution [such as code complexity, speed, amount of memory used]

• What computers find hard. [in a general sense, rather than formally; things
that scale badly; or that we don’t know how to program well, like natural
language understanding]

• The need for accuracy of both algorithm and data [difficulty of data
verification; garbage in, garbage out]

KS4

• The choice of an algorithm may be influenced by the data structure and
data values.

• Familiarity with several key algorithms [sorting and searching].

• Different algorithms may have very different performance characteristics.

[For example, binary search is much faster than linear search as the size of
the list increases. Knowledge of the O(n) notation is not required.]

4.2 Programs

A student should know how to write executable programs in at least one

language.

KS3

BOK 2011 Page 16

• Sequence

• Iteration

• Choice, including

o Relational operators

o Simple use of AND and OR and NOT

o How relational operators are affected by negation [e.g. NOT (a>b)
= a≤b]

• Variables and assignment

• Using a simple linear data structure, such as an array or a list

• Abstraction via functions and procedures (definition and call), including

o Functions and procedures with parameters

o Programs with more than one call of a single procedure

• Finding and correcting logical errors

KS4

• Manipulation of logical expressions, e.g. truth tables, DeMorgan’s rules, and
boolean valued variables

• Two-dimensional arrays (and higher).

• Use of nested constructs: a loop body can contain a loop, or a conditional,
or a procedure call, etc. Similarly for conditionals

• Procedures that call procedures, to multiple levels. [Building one
abstraction on top of another.]

• Programs that read and write persistent data in files.

4.3 Data

A student should understand how computers represent data:

KS3

• Introduction to binary representation

• Representations of:

o Unsigned integers

o Text. [Key point: each character is represented by a bit pattern.
Meaning is by convention only. Examples: Morse code, ASCII.]

o Sounds [both involving analogue to digital conversion, e.g. WAV,
and free of such conversion, e.g. MIDI]

o Pictures [eg bitmap] and video.

• Many different things may share the same representation, or “the meaning
of a bit pattern is in the eye of the beholder” [e.g. the same bits could be

interpreted as a BMP file or a spreadsheet file; an 8-bit value could be
interpreted as a character or as a number].

• The things that we see in the human world are not the same as what

computers manipulate, and translation in both directions is required [e.g.
how sound waves are converted into an MP3 file, and vice versa]

• There are many different ways of representing a single thing in a computer.
[For example, a song could be represented as:

BOK 2011 Page 17

o A scanned image of the musical score, held as pixels

o A MIDI file of the notes

o A WAV or MP3 file of a performance]

• Different representations suit different purposes [e.g. searching, editing,

size, fidelity].

• Introduction to relational databases; to include the concepts of creating
relationships and extrapolation of data with a simple 2 or 3 table relational

example. The benefits of relational versus non relational database
development

KS4

• Hexadecimal

• Two’s complement signed integers

• String manipulation

• Data compression; lossless and lossy compression algorithms (example

JPEG)

• Problems of using discrete binary representations:

o Quantization: digital representations cannot represent analogue

signals with complete accuracy [e.g. a grey-scale picture may have
16, or 256, or more levels of grey, but always a finite number of

discrete steps]

o Sampling frequency: digital representations cannot represent

continuous space or time [e.g. a picture is represented using pixels,
more or fewer, but never continuous]

o Representing fractional numbers

• An introduction to SQL queries to enable data to be retrieved from
databases. The SQL operators could include (but is not limited to) SELECT,

arithmetic operators; Boolean operators; special operators such as Like,
Between and Null; aggregate Functions; use of Count and Distinct; ordering
and grouping; restricting groups using Having; and simple Joins.

4.4 Computers

A student should know the main components that make up a computer system,
and how they fit together (their architecture).

KS3

• Computers are devices for executing programs

• Computers are general-purpose devices (can be made to do many different

things)

• Not every computer is obviously a computer (most electronic devices
contain computational devices)

• Basic architecture: CPU, storage (eg hard disk, main memory),
input/output (eg mouse, keyboard)

• Computers are very fast, and getting faster all the time (Moore’s law)

• Computers can ‘pretend’ to do more than one thing at a time, by switching
between different things very quickly

BOK 2011 Page 18

KS4

• Logic gates: AND/OR/NOT. Circuits that add. Flip-flops, registers (**) .

• Von Neumann architecture: CPU, memory, addressing, the fetch-execute
cycle and low-level instruction sets. Assembly code. [LittleMan]

• Compilers and interpreters (what they are; not how to build them).

• Operating systems (control which programs are running, and provides the
filing system) and virtual machines.

4.5 Communication and the Internet

A student should understand the principles underlying how data is transported
on the Internet.

KS3

• A network is a collection of computers working together

• An end-to-end understanding of what happens when a user requests a

web page in a browser, including

o Browser and server exchange messages over the network

o What is in the messages [http request, and HTML]

o HTML, style sheets

o What the server does [fetch the file and send it back]

o What the browser does [interpret the file, fetch others, and display
the lot]

• How data is transported on the Internet

o Packets and packet switching

o Simple protocols: an agreed language for two computers to talk to

each other. [Radio protocols “over”, “out”; ack/nack; ethernet
protocol: first use of shared medium, with backoff.]

• How search engines work and how to search effectively. Advanced search
queries with Boolean operators.

KS4

• Client/server model.

• MAC address, IP address, Domain Name service, cookies.

• Some “real” protocol. [Example: use telnet to interact with an HTTP
server.]

• Routing

• Deadlock and livelock

• Redundancy and error correction

• Encryption and security

4.6 Optional topics for advanced students

Computing offers an enormous range of more advanced topics, all of which are
accessible to a motivated KS4 student. The list here should not be regarded as

exhaustive.

BOK 2011 Page 19

Algorithms

• Modular arithmetic

• Hashing

• Distributed algorithms

• Optimisation algorithms and heuristics; “good enough” solutions [simulated
annealing];

• Monte Carlo methods

• Learning systems [matchbox computer]

• Biologically inspired computing; neural networks, Cellular automata,

Emergent behaviour

• Graphics [rotating a 3D model]

Programming

• Recursion

• Pointers and data structures

• Assembler

• Other language types and constructs: object oriented and functional
languages

Data

• Floating point representation

Computers

• Interrupts and real-time systems

• Multiprocessor systems

• Memory caches

• Undecidability problems

Communications and Internet

• Asymmetric encryption; key exchange

Human Computer Interaction (HCI)

• Recognition of the importance of the user interface; computers interact
with people.

• Simple user-interface design guidelines

BOK 2011 Page 20

5. Attainment targets for computing

The level descriptions provide the basis for making judgements about pupils’
performance at the end of key stages 1, 2 and 3. At key stage 4, national
qualifications are the main means of assessing attainment with the GCSE in

Computing offering a clear benchmark. The range of levels within which the
great majority of pupils are expected to work and the expected attainment for

the majority of pupils at the end of the key stage are:

• Key stage 1 works at levels 1 – 3;
at age 7 they are expected to be at Level 2

• Key stage 2 works at levels 2 – 5;
at age 11 they are expected to be at Level 4

• Key stage 3 works at levels 3 – 7;
at age 14 they are expected to be at Level 5

Level 1

Pupils can orally describe existing storyboards of everyday activities.

Pupils can order a collection of pictures into the correct sequence.

Pupils recognise that many everyday devices respond to signals and instructions.

Pupils can make programmable toys carry out instructions.

Level 2

Pupils draw their own storyboards of everyday activities.

Pupils plan and give direct commands to make things happen such as playing
robots.

Pupils solve simple problems using robots.

Pupils recognise patterns in simple sets of data.

Level 3

Pupils recognise similarities between storyboards of everyday activities.

Pupils plan a linear (non-branching) sequence of instructions.

Pupils give a linear sequence of instructions to make things happen.

Pupils refine and improve their instructions.

Pupils present data in a systematic way.

Level 4

Pupils analyse and represent symbolically a sequence of events, for example,

‘make a cup of tea’.

BOK 2011 Page 21

Pupils recognise different types of data: text; number; instruction.

Pupils understand the need for care and precision of syntax and typography in

giving instructions.

Pupils can give instructions involving selection and iteration.

Pupils can ‘think through’ an algorithm and produce an output (dry run).

Pupils can present data in a structured format suitable for processing.

Level 5

Pupils partially decompose a problem into its sub-problems and make use of a

notation to represent it.

Pupils analyse and present an algorithm for a given task.

Pupils recognise similarities between simple problems and the commonality in

their algorithm.

Pupils explore the effects of changing the variables in a model or program.

Pupils develop, try out and refine sequences of instructions, and show efficiency
in framing these instructions. They are able to reflect critically on their programs
in order to make improvements in subsequent programming exercises.

Pupils are able to make use of procedures without parameters in their programs;
Pupils will also be able to manipulate strings and select appropriate data types.

Pupils can design data structures.

Level 6

Pupils describe more complex algorithms, for example, sorting or searching
algorithms.

Pupils can describe systems and their components using diagrams.

Pupils can fully decompose a problem into its sub-problems and can make error-
free use of a notation to represent it.

Pupils can recognise similarities in given simple problems and able to produce a
model which fits some aspects of both problems.

Pupils use programming interfaces to make predictions and vary the rules within
the programs. Pupils assess the validity of their programs by considering or
comparing alternative solutions.

Pupils are capable of independently writing or debugging a short program.

Pupils make use of procedures with parameters and functions returning values in

their programs and are also able to manipulate 1-dimensional arrays.

Pupils can design appropriate data structures.

Level 7

Pupils describe key algorithms, for example sorting/searching, parity, and are

aware of efficiency.

BOK 2011 Page 22

Pupils can fully decompose a problem into its sub-problems and can makes good
use of an appropriate notation to represent it.

Pupils can recognise similarities in given more complex problems and are able to
produce a model which fits some aspects of both problems.

Pupils use pre-constructed modules of code to build a system.

Pupils design complex data structures including relational databases.

Pupils select and use programming tools suited to their work in a variety of

contexts, translating specifications expressed in ordinary language into the form
required by the system.

Pupils consider the benefits and limitations of programming tools and of the
results they produce, and Pupils use these results to inform future judgements
about the quality of their programming.

Pupils program in a text-based programming language, demonstrating the
processes outlined above. Pupils document and demonstrate that their work is

maintainable. Pupils can debug statements.

Pupils can analyse complex data structures, use them in programs and simplify
them, for example, normalisation.

Level 8

Pupils independently select appropriate programming constructs for specific
tasks, taking into account ease of use and suitability.

Pupils can recognise similarities in more complex problems and are able to

produce a model which fits most aspects of both problems

Pupils independently write the program for others to use and apply advanced

debugging procedures.

Pupils demonstrate an understanding of the relationship between complex real

life and the algorithm, logic and visualisations associated with programming.

Exceptional performance

Pupils can recognise similarities between more complex problems, and are able
to produce a general model which fits aspects of them all.

Pupils competently and confidently use a general-purpose text-based

programming language to produce solutions for problems using code efficiently.

BOK 2011 Page 23

6. Glossary

Abstraction: Abstraction is dividing a problem/system/process into sub-
problems/systems/processes. In Computing a problem is often broken up into

smaller components before the solution is tackled; i.e. decomposed. Each sub-
part can be represented by using a variety of techniques; such as structure

charts.

Algorithm: A precise rule (or set of rules) specifying how to solve a problem or
carry out a process.

Assignment: The process of assigning a value to a variable; understanding the
meaning of A:=B.

Data Modelling: The process of identifying entities and the relationships
between them using diagrams.

Debugging: A systematic approach to finding faults in software.

Design: Design is the description interfaces, systems and processes to produce
a solution/product for each of the sub-problems/systems/processes.

Expressions: A combination of values, variables, operators and functions which
are interpreted and then produce another value.

Implementation: The internal details of how a particular software or hardware

component works. For example, the implementation of a procedure would be
the code of the procedure body.

Interface: A description of the externally-visible ways in which a user of a
software or hardware component can interact with that component. For
example, the interface of a procedure would consist of a description of the

parameters, their types, and their purpose.

Iteration: Programming statements which allow you to repeat a segment of

code. For example, loops, such as the DO…WHILE or REPEAT…UNTIL.

Models: Computer and paper-based representations of systems which enable
exploration and asking ‘what if?’ .

Pseudo code: An informal high level description of a computer programming
algorithm that is intended for human reading. Usually part of the design process.

Selection: Programming statements that enable the program to follow a
different path if certain conditions are true. For example, the use of IF
statements and CASE…SELECT statements.

Specification: A description of what the proposed system/solution should do
described in structured English and diagrams; not necessarily how it should be

done.

