
AQA GCSE Computer Science
Example Scheme of Work
Version 1

1

GCSE Computer Science

Example Scheme of Work

AQA GCSE Computer Science
Example Scheme of Work
Version 1

2

AQA GCSE Computer Science

Example Scheme of Work (120 guided learning hours)

Introduction

This is based on the new GCSE Computer Science delivered over 120 guided learning hours. This includes the 50 hours for both controlled assessments

which are not included in the scheme of work.

This scheme of work is provided as an example only. Schools/colleges should produce their own assessments in line with their local delivery circumstances.
It should be noted that this scheme of work assumes that students have had no previous experience of formally taught computer science.

This scheme of work includes reference to various development tools and languages and, where appropriate, specific examples have been provided. Please

note that the only mandatory language required by the specification is SQL. All other languages and development environments are the choice of the

school/college and/or individual student.

The specification is intended to be engaging and relevant and the majority of the theory exists to increase the students’ ability to design and create

programmatic solutions to computational problems. This scheme of work aims to avoid the somewhat artificial distinction of content between practical

and theory. There are three suggested extended homework projects within the scheme of work. These are not necessary to cover the specification but

they may be useful as programming practice and also as preparation for the controlled assessments.

Some parts of the course are not explicitly covered in lessons (such as pseudocode and commenting programs) as it is intended that they will be used and

embedded in work throughout the course.

AQA GCSE Computer Science
Example Scheme of Work
Version 1

3

Useful resources

You may find these websites valuable for further resources (this is not an exhaustive list):

 BYOB (Build Your Own Blocks), a visual programming language primarily for children,
http://byob.berkeley.edu/

 Codecademy, a web-based learning environment currently supporting JavaScript and web programming, Ruby and Python,
http://www.codecademy.com/

 Computer Science For Fun, shows how computer science is also about people, solving puzzles, creativity, changing the future and having fun,

http://www.cs4fn.org/

 Computer Science Inside, provides web based resources for teachers,
http://csi.dcs.gla.ac.uk/

 Computing At School, joining this group is free of charge and provides access to resources and relevant debate,

http://www.computingatschool.org.uk/

 CSUnplugged, a collection of free learning activities that teach Computer Science through engaging games and puzzles,

http://csunplugged.org/

 Lazurus, a software application that provides a Free Pascal compiler,

http://lazarus.freepascal.org/

 Microsoft DreamSpark, gives free access to professional-level development, design and gaming software to build real sites, apps and games for
XBoxLive, Kinect and mobile phones,
http://www.dreamspark.com/

http://byob.berkeley.edu/
http://www.codecademy.com/
http://www.cs4fn.org/
http://csi.dcs.gla.ac.uk/
http://www.computingatschool.org.uk/
http://csunplugged.org/
http://lazarus.freepascal.org/
http://www.dreamspark.com/

AQA GCSE Computer Science
Example Scheme of Work
Version 1

4

 Microsoft .NET Gadgeteer, a paid-for platform that allows hobbyists, educators and developers to build and refine prototype electronic devices,

http://www.netmf.com/gadgeteer/

 MIT AppInventor, use a browser to design then, through a live connection between the computer and a phone, the app appears on the phone.

http://www.appinventor.mit.edu/

 MySQL, allows the user to create of a relational database structure on a web-server in order to store data or automate procedures,

http://www.mysql.com/

 PHP, a widely-used general-purpose scripting language that is especially suited for Web development and can be embedded into HTML,

http://www.php.net/

 Raspberry Pi, a credit-card sized computer that plugs into your TV and a keyboard and is for children to learn programming through practical
activitiy,
http://www.raspberrypi.org/

 Scratch, a programming language that makes it easy to create interactive stories, animations, games, music, and art,
http://scratch.mit.edu/

 W3Schools, a reference and tutorial for HTML, CSS and JavaScript and other languages for the web,

http://www.w3schools.com/

 Young Rewired State, offers support to under 18s who are learning how to program,
http://youngrewiredstate.org/

http://www.netmf.com/gadgeteer/
http://www.appinventor.mit.edu/
http://www.mysql.com/
http://www.php.net/
http://www.raspberrypi.org/
http://scratch.mit.edu/
http://www.w3schools.com/
http://youngrewiredstate.org/

AQA GCSE Computer Science
Example Scheme of Work
Version 1

5

Topic Spec Hour Activities Resources Comments

Computer Systems 3.1.8.1 1st Demonstrate a modern computer game. Ask
students to decompose what they see going
on into sections – input/output mechanisms,
AI, graphics, sound, information to be saved
and so on.

 Focus on the controller and break down in
some detail the passage of data through the
system.

 Explain that a computer system is a
combination of hardware and software
working together.

 Any games system will
suffice but use of the
XBOX (or PC with XBOX
controller) and Kodu
gives an additional
benefit that you can
show basic sequencing
of instructions and
response to events.

 If the resources are
available you could use a
games system with a
transparent case to
illustrate the flow of
data.

 Ensure that students
realise a computer
system does not have to
look like a games box or a
PC and can be any
combination of hardware
and software.

Expressions &
Types

3.1.1 1st Use a command line interpreter as a calculator
introducing the main arithmetic operators (*,
/, +, - and power) and the need for
parentheses in numerical expressions. If an
interpreter doesn’t exist for your choice of
language then introduce these expressions in
a simple program.

 Show students how a function of their
language can be used to inspect the type of a

given expression (for instance type(3)
might return integer). Students to
experiment with the types of numerical
expressions.

 Explain the number types integer and real
with respect to the programming language

 Command line
interpreters exist for
many languages and
increasingly many can be
accessed as web
applications.

 See this article for more
on type introspection:
http://en.wikipedia.org/
wiki/Type_introspection

http://en.wikipedia.org/wiki/Type_introspection
http://en.wikipedia.org/wiki/Type_introspection

AQA GCSE Computer Science
Example Scheme of Work
Version 1

6

used.

 Extend the expressions to include comparative
operators ((>, <, ≤,≥,≠) and ask students to use
the same introspection function from earlier
in the lesson to introduce the Boolean type.

 Homework could be to extend these
expressions and introduce the types string and
character.

Variables &
Constants

3.1.1 1st Introduce the concept of variables using
labelled plastic cups and tokens. The value of
a cup is the number of tokens it contains at
any given time.

 Introduce the pseudocode for assignment and
set exercises for students involving the cups.

 Show students how to declare variables and
assign values using an interpreter for their
language (again, if an interpreter doesn’t exist
then frame these in a simple program).

 Extend questions to include values that do not
change throughout the computation and
introduce the idea of a constant as an
“unchanging variable”.

 Set homework to answer questions abstracted
away from the language such as, “swap the
contents of variables A and B”.

 The cups and tokens
activity works better if
the students are also
given sticky labels that
can be used to label the
cups. By stepping
through the assignments
in sequence you can also
show how the state of
variables changes
throughout execution of
a program.

 The AQA pseudocode
can be found at:
http://web.aqa.org.uk/q
ual/newgcses/ict/compu
ter-science-
materials.php?id=10

 Part 3.1.1 of the
specification states that
students should
understand when to use
constants and variables in
problem solving
scenarios. Although this
lesson starts this it is
important that the first
lessons in programming
reinforce the correct use
of the fundamental
techniques such as the
use of variables and
constants and sequence,
selection and iteration
even when they are not
explicitly covered.

Selection 3.1.3 1st Recap on the Boolean type from the earlier
lesson.

 As a class create a simple number guessing
game and record the result in pseudocode.
Hopefully this will intuitively introduce IF

 Refer to the AQA
document on the use of
pseudocode – this isn’t
essential but it will be
the pseudocode used in

http://web.aqa.org.uk/qual/newgcses/ict/computer-science-materials.php?id=10
http://web.aqa.org.uk/qual/newgcses/ict/computer-science-materials.php?id=10
http://web.aqa.org.uk/qual/newgcses/ict/computer-science-materials.php?id=10
http://web.aqa.org.uk/qual/newgcses/ict/computer-science-materials.php?id=10

AQA GCSE Computer Science
Example Scheme of Work
Version 1

7

statements.

 Convert the pseudocode into a program and
extend the program to include basic user input
and output messages.

 Extend the game to include IF-THEN-ELSE
statements first in pseudocode and then in the
program.

the exam and so early
familiarity would benefit
students.

 If not already done this
would be a good time to
introduce students to
how to create and
execute a program in
your preferred
development
environment.

2nd Students to arrange themselves randomly in a
line and then perform a parallel pairwise sort
based on the outcome of ‘are you taller than
me?’ The same could be completed on any
Boolean condition such as ‘are you older than
me?’

 Get students to think of a number between 1
and 64 and then try out in pairs how long it
takes them to guess the number asking only
Boolean question (i.e. where the answer can
either be true or false). If done perfectly this
should take a maximum of 6 questions.

 Simplify the binary search to numbers 1 to 4
and show how to find the answer using a
binary tree. Use this tree to introduce the
idea of nested conditionals.

 CSUnplugged have a
fascinating
implementation of a
parallel sorting exercise
that can be done on a
playground with some
chalk and sunny
weather:
http://csunplugged.org/s
orting-networks

 A tree diagram (that also
shows the link with binary
numbers) for 0-15 can be
found here:
http://ecee.colorado.edu/
~mathys/ecen1200/hwcl0
6/bin16tree2_640.png

 The idea behind the
parallel sort is to show
that computation involves
asking simple logical
questions in sequence.
Also that computers
cannot infer answers
outside of their
instructions, for instance
they can’t think ‘I’m the
tallest person here so I’m
going to walk to the end’.

3rd Show students how to code using nested
conditionals using the above binary search as
an example.

 This lesson can also be
used to introduce more
advanced features of the

http://csunplugged.org/sorting-networks
http://csunplugged.org/sorting-networks
http://ecee.colorado.edu/~mathys/ecen1200/hwcl06/bin16tree2_640.png
http://ecee.colorado.edu/~mathys/ecen1200/hwcl06/bin16tree2_640.png
http://ecee.colorado.edu/~mathys/ecen1200/hwcl06/bin16tree2_640.png

AQA GCSE Computer Science
Example Scheme of Work
Version 1

8

 Discuss the problems with deeply nested
conditionals when developing solutions.

 Set homework to extend the game to guessing
numbers between 1 and 8 and produce a
coded solution.

development
environment used.

AQA GCSE Computer Science
Example Scheme of Work
Version 1

9

Repetition 3.1.3 1st Exhibit a program that uses audio playback
features of a language to play different
musical snippets such as a drum beat.

 Show how these can be played multiple times
using repetition statements such as REPEAT
10, FOR X IN 10 or similar.

 Students to create their own music using
repetition.

 Incorporate IF statements to respond to user
input and adjust volume level,
instrumentation or similar.

 There is an abundance of
free and copyright-free
music that can be
sourced from the web
and could be used for
these exercises.

 Different languages vary
in the ease of playing
different sounds; Scratch
for instance makes this
trivially easy, others
might require OS-
dependent libraries.

AQA GCSE Computer Science
Example Scheme of Work
Version 1

10

2nd Revisit the binary search from earlier in the
course for the range 1-8 and, having provided
students with a tree diagram showing the
choices to be made, get students to encode a
solution in pairs using repetition.

 Discuss the answers that students get and
offer an exemplar. Question whether this has
made the solution more correct, more
efficient or more elegant.

 Giving students a tree
diagram showing the
comparison choices
made at each step will
enable students to focus
on the mechanics of
using repetition. A tree
diagram (that also shows
the link with binary
numbers) for 0-15 can
be found here:
http://ecee.colorado.ed
u/~mathys/ecen1200/h
wcl06/bin16tree2_640.p
ng

 Students will hopefully
produce code that is
easier to follow than
earlier in the course when
answering the same
question without
repetition. Although this
may not be more efficient
it will make the code
easier to read, easier to
update and possibly
easier to avoid making
mistakes.

3rd Prior to the lesson create a simple game
environment where ‘sprites’ respond to user
input.

 Students to adjust sprite behaviour using
WHILE statements. This could be movement
speed, interaction with other sprites and so on
such as WHILE right button pressed TURN 1
degree clockwise.

 There are plenty of
environments that allow
students to write games
without too much
additional complexity
(Greenfoot, Scratch,
YouSrc, PyGame and so
on).

4th Students to create two pseudocode programs
to find out if any of the unsorted group of
students has a birthday today, one using
REPEAT and one using WHILE. Discuss the
run-time efficiency of both of these
approaches (the WHILE approach has the
advantage that on average it will require less
inspection of birthdays).

 Students should realise
the difference in uses of
count controlled loops
such as REPEAT and
condition controlled
loops such as WHILE.

 The AQA GCSE Computer
Science pseudocode

AQA GCSE Computer Science
Example Scheme of Work
Version 1

11

 Students to create pseudocode for various
cooking recipes such as baking a cake or
making ice cream by using variables,
constants, sequence, selection and repetition.

 Set homework to create programmatic
solutions problems of varying complexity
using a combination of selection and
repetition.

guide shows what loops
may be referred to in the
exam although students
should be familiar with
both these and all of the
looping mechanisms that
will enable them to use
their programming
language expressively.

Boolean Operators 3.1.1 1st Play a guessing game where you have to
narrow down people based on their
appearance to introduce NOT, AND and OR.

 Use truth tables to build on the intuitive
notions of these operators.

 Set exercises to simplify Boolean expressions
of increasing complexity using truth tables.

 There are quite a few
online guessing games
(and also the proprietary
Guess Who) that will
work with this - a web
search will return plenty.

 This should be fairly
intuitive although the
case of OR where it is
either or both may have
to be covered more
clearly.

 Simplification of Boolean
expressions is not on the
specification although it is
included here to help
understanding or as an
extension activity.

2nd Show students how nested conditionals can
sometimes be better replaced with Boolean
statements combined with AND or OR.

 Students to use a gaming environment where
sprites respond differently depending on, for
instance, whether the x and y coordinates are
within certain bounds.

 Reuse the gaming
environment from
earlier in the course.
Many of these come
with scenarios and
sample programs that
can be adapted and
enhanced.

 This will give additional
help to students who are
going to complete the
controlled assessment in
gaming.

Arrays 3.1.1 1st Motivate the use of arrays by showing data
sets (such as names of everyone in the class)

 Depending on the
language and whether

 If the exam refers to
arrays it will be assumed

AQA GCSE Computer Science
Example Scheme of Work
Version 1

12

represented as arrays as opposed to using
individual variables.

 Show how to declare arrays and assign
elements. This will obviously vary depending
on the programming language used.

 Students should create arrays for simple data
sets such as days of the week, players in a
team and prime numbers.

the length of an array
can be changed after it
has been created it may
help to illustrate the use
of arrays with a fixed
series of indexed boxes.

that indexing starts at 1
and not 0. Although this
will not affect the way
students program in their
given language they
should be aware of any
difference as part of their
exam preparation.

2nd Introduce the techniques and idioms used to
iterate over arrays in the given language, eg
FOREACH or FOR constructs.

 Show how to use random number generation
to populate an array and use iterative
techniques to print out all of the numbers,
find the highest and lowest number, the mean
average, the most common number and so
on.

 Set students homework to analyse a large
array populated with words found in a
book/play/newspaper article or similar.
Students could find out the average word
length, the relative occurrence of popular
words, the occurrence of different characters
and so on.

 This is potentially a very
language dependent part
of the course so relate
the programs used to
pseudocode, animations
and so on in order for
students to see the
general picture as well as
the language techniques.

3rd Show how arrays can contain other arrays as
elements by creating a simple noughts and
crosses game.

 Students to create an array that represents a
paragraph where each element is a sentence.
Each sentence is in turn an array of words.
They could then use nested FOR loops (or

 There are various
physical ways to show
this such as envelopes
containing envelopes
containing cards.

 Depending on the
students understanding
they may be ready to
develop the noughts and
crosses game further as
homework. This would
be particularly useful

AQA GCSE Computer Science
Example Scheme of Work
Version 1

13

similar) to print out the group of sentences in
full, print individual sentences backwards,
print the whole paragraph backwards,
reassign some words and so on.

before introducing
functions to further
motivate that topic.

Flowcharts 3.1.3 1st Ask students to create a sketch or picture of a
program that represents the structure without
relying heavily on text. Gather answers and
pick up on good unambiguous pictures. Some
students will probably use arrows to show
flow of execution.

 Show the standard flowchart symbols for
start/stop, process, I/O and decision.

 Students complete exercises in translating
flowcharts to programs and vice versa.
Iteration should be included and the link
between feedback on a decision in a flowchart
and a WHILE loop should be explored.

 Discuss the advantages and limitations of
flowcharts when developing and analysing
programs.

 Flowol is commonly used
to introduce flowcharts,
especially as students
can visualise the results.

 Flowcharts may well have
been covered in Design
and Technology courses
or ICT in KS3. If so the
focus on this lesson
should be on conversion
between the
programming language
and flowcharts.

Trace Tables 3.1.6 1st Present students with complex pseudocode
and flowchart algorithms and discuss how
their meaning could be found out.

 Return to the second lesson on variables and
the use of labelled cups and use these to trace
through the algorithm.

 Repeat this process but tabulate the results as
execution progresses, present the result as a
trace table.

 Return to the algorithms presented at the

 The introduction of trace
tables is best motivated
with algorithms that
appear complex but
present an obvious
answer once they are
worked through. Many
sorting algorithms are in
this category.

 If there is time (and if it is
appropriate for the
development
environment used)
students could be shown
how their IDE can keep
track of variables and
how they can be
inspected by pausing
execution at breakpoints.

AQA GCSE Computer Science
Example Scheme of Work
Version 1

14

start of the lesson so students can use trace
tables to ascertain their meaning.

Errors 3.1.6 1st Discuss problems that students have had so
far with the development of their programs
and categorise the errors (leaving aside lack of
knowledge) as syntactic, logical and runtime.

 Show how their IDE can be used to help with
syntax errors using code highlighting,
automatic indenting, code completion, code
suggestions or similar.

 Make a list of the most common syntax errors
in the language used and display them in the
classroom.

 Present the students with flowcharts and
pseudocode of algorithms that contain logical
errors. Explain what the algorithms are
intended to do and ask students to correct
them. These algorithms could also be
translated into programs for further practice.

 At this stage students will
probably be most
concerned with syntax
errors although they will
probably have
encountered logical
errors too even if they
didn’t realise it. Runtime
errors will probably be
less common but may
have occurred when
covering arrays (indexing
errors).

2nd Continue the work on errors by providing
pseudocode and flowchart algorithms that are
known to cause runtime errors in the chosen
programming language.

 Students should encode these algorithms and
run them and inspect the output when the
program crashes. Students should correct
these programs so they run correctly.

 Finally show students how errors can be
‘caught’ and handled in their programming
language. Discuss the reasons for doing this
and also the possible dangers.

 This is another section
that is highly dependent
on the language chosen
although runtime errors
are commonly generated
by type mismatches
(such as inputting a
string when a number
was expected) and array
indexing errors (such as
using -1 as an index). A
web search for common

AQA GCSE Computer Science
Example Scheme of Work
Version 1

15

runtime errors in the
specified language
should provide some
pointers(!).

Functions &
Procedures

3.1.4,
3.1.3

1st Create a list of the built in functions that
students have already used. These may
include type inspection, user input and
output, array length, random number
generation and so on. Explain that as
language users these can all be seen as a black
box that takes inputs and returns an output.

 Take the example of working out array length
and ask students to write the program for how
the inner workings of the function could be
written.

 Show how this code can be ‘wrapped up’ in a
function in the language used with the array
used as an argument and an integer returned.

 Repeat these steps for a function to return the
bigger of two numbers but let the students
encode the function.

 If time, repeat again for a function to return
whether a string contains an odd number of
letters.

 Different languages treat
functions in different
ways (such as the way in
which parameters are
handled, whether the
type of the return value is
enforced, whether
parameters have to be
arranged in a certain
order and if they are
allowed default values
and so on); students
should be able to use
functions capably within
their chosen language.

2nd Ensure students are familiar with the
terminology parameters and return value.
This can be illustrated with two or three
differently coloured paints poured into a jar
that, after shaking, returns a different
coloured paint. It can also be shown
programmatically by assigning the result of a

AQA GCSE Computer Science
Example Scheme of Work
Version 1

16

function to a variable.

 Use type introspection to show that the type
of a function applied to its arguments is the
type of the return value.

 Show students how to access the
documentation of the inbuilt functions of the
language and set tasks that require reading
the documentation.

3rd Build on the previous lesson with tasks to
build functions of differing complexity. These
functions should involve manipulating
numbers, text, arrays and so on.

 Introduce procedures as blocks of code that
can take input arguments but do not return a
value.

 Asking students to
rewrite some common
built in functions (such
as MAX, LENGTH,
INDEXOF and so on) will
give the students an easy
way to test their
answers.

4th Formalise the concept of testing; students will
already have tested their programs to check
they run as expected but their testing may
have been ad hoc and imprecise.

 Show how unit tests can be written for
functions to check they run as expected.

 Students should return to the functions they
have written previously and include unit tests
for them.

 This is another area
where the language used
will dictate the best way
to deliver this concept. If
a language does not
support unit testing
directly the students
could be shown how to
develop test programs
that run the functions and
compare expected
outcomes with the actual
results.

 Throughout the creation

AQA GCSE Computer Science
Example Scheme of Work
Version 1

17

of unit tests students
should be encouraged to
comment their work in a
consistent and sensible
way.

5th Show a program that contains three or four
correctly written functions. The program
could be on any topic - a numerical problem, a
game, a program to display the output of a
webcam – as long as it is clearly separated into
functions.

 Provide students with the code for a selection
of functions all related to a problem and
challenge them to solve problems by
application of these functions. For example
you could have a function that returns the
average combined weight of any number of
passengers, a function that returns how many
litres of fuel a car uses per kilometre given the
weight of passengers, a function that returns
the price of a given number of litres of fuel
and a function that returns the distance
between two known points. Students should
then work out the price of journey scenarios.

 Students may make unnecessary use of
variables to hold values returned from
function calls. Show how function calls can be
embedded within expressions to reduce
syntactic clutter.

Scope 3.1.5 1st Give students code to experiment with where
(legitimate) name clashes occur such as the

 For the purposes of the
exam students will not be

AQA GCSE Computer Science
Example Scheme of Work
Version 1

18

same use of name for the parameter and the
argument. Allow students to formulate their
own rules on how their programming
language scope works.

 Colour coding variable names on a large print
out of code and pinning string from name
occurrences in code to a table where their
values are kept may help explain the concept
of scope.

required to explain
scoping rules for any
specific language
although this is desirable
for their own
development and the
controlled assessment if
they are to use it to
program effectively.

Bespoke Data
Structures

3.1.2 1st Students to create a simple bespoke data
structure that contains details for a person at
school (eg firstname, lastname, age and
gender).

 Students should be shown how to create
multiple instances of this data structure and
assign them to variables.

 Students should be comfortable with
accessing and updating the fields/attributes of
the data structure.

 It may be easiest with
some languages to touch
on object orientation at
this point if this is a
strength of that language,
others may wish to
discuss this in terms of
records or other
aggregate structures.
There is no need to cover
OOP in the specification
but it may be beneficial if
you intend using
environments for the
controlled assessments
that rely on object
orientation.

2nd Continue work on bespoke data structures by
getting students to model geometric shapes
(could use POINT with two floating point
numbers for x and y coordinates as a starting
point and then for RECTANGLE include a

AQA GCSE Computer Science
Example Scheme of Work
Version 1

19

POINT for the bottom left corner and two
other floats for the length of the sides,
alternatively a circle could be a POINT for the
origin and a float for the radius and so on).

3rd Introduce a gaming environment that makes
use of bespoke structures.

 Create the shell of a game but allow students
to use, update and customise their bespoke
data structures.

 Greenfoot and PyGame
work equally well for
Java and Python
respectively. BYOB
Scratch also has this
functionality in a more
limited form.

4th Continue working in the gaming environment.
In addition to supporting learning of bespoke
data structures this could serve as an
introduction to bespoke data structures this
could also be preparation for the gaming
controlled assessment.

Software
Development
Lifecycle

3.1.11 1st Reflect on how students have created
programs so far – what patterns have people
noticed? What has worked successfully and
what less so?

 Invite a professional developer to discuss how
programs are developed and maintained in
their sector of the software industry.

 Contacting CaS may help
in locating a willing and
suitable developer:
http://www.computinga
tschool.org.uk/

http://www.microsoft.co
m/uk/education/teacher
s/innovative-
teachers.aspx

2nd Divide students into groups and the teacher
takes on the role of different clients. Each
group is given tubs of coloured play dough.
The ‘clients’ each have a picture of a structure

 Provide reference to the
exemplar test plans for
the A-grade controlled
assessment. This shows

 For the specification
students should know the
major stages of
development and how

http://www.computingatschool.org.uk/
http://www.computingatschool.org.uk/
http://www.microsoft.com/uk/education/teachers/innovative-teachers.aspx
http://www.microsoft.com/uk/education/teachers/innovative-teachers.aspx
http://www.microsoft.com/uk/education/teachers/innovative-teachers.aspx
http://www.microsoft.com/uk/education/teachers/innovative-teachers.aspx

AQA GCSE Computer Science
Example Scheme of Work
Version 1

20

that they need building – the waterfall clients
must describe this structure completely to
their group before the group can make it
whereas the cyclical team can ask for regular
feedback from their client. On completion of
the structures ask each group to feedback on
the strengths/weaknesses of their approach.

 Formalise different approaches to developing
software (cyclical, waterfall, spiral). Discuss
which approach would work best for students
during their controlled assessment.

 Show how to create a test plan and explain
the different ways that testing can be carried
out during software development. Relate this
to earlier work on unit testing for functions.

a blend of unit testing
and also end user
testing.

they fit into the different
development models.

Prototyping &
Testing 1

3.1.11.1,
3.1.12

hw Students should now be in a position to
develop a small scale but non-trivial project.
This could be set as an extended homework
over two weeks with peer-review sessions held
over ten minutes at the start of each lesson.

 Projects could be as simple as the ‘here is
some data, do something interesting with it’
approach or the project could be more
formally structured.

 Encourage students to adopt an iterative
prototype-test-refine approach when
developing their project.

 This could be left as an
open ended task
enabling the students
the freedom to explore
beyond what has been
formally taught in the
course. An interesting
project may be to
organise a collaborative
online code project –this
will require tools that
enable
sharing/versioning of
files such as

 Prototyping and testing
have already been
covered in the lessons,
this project will give
students the opportunity
to use these skills and
improve their knowledge
of their language.

AQA GCSE Computer Science
Example Scheme of Work
Version 1

21

PythonAnywhere or
Sharepoint. Alternatively
students could be left to
develop their solutions
individually.

Bits & Bytes 3.1.10 1st Students challenged in groups to work out
ways to communicate (generally) with one
another using 8 torches.

 Explain that the on-off state of a torch is
analogous to the binary alphabet used for
internal communication within a computer.

 Introduce the terminology bit, nibble, byte,
kilobyte, megabyte, gigabyte and terabyte.

 Referencing the terms
megabyte, gigabyte and
terabyte to known items
of computer hardware
may make the numbers
more tangible.

Number Systems 3.1.10 1st Use place-holder cards to create binary
numbers.

 Introduce and practise binary to denary and
denary to binary conversion.

 Reinforce use of binary-denary conversion
with the Cisco binary game.

 There are lots of well
documented ways to
teach binary numbers.
This approach is from
CSUnplugged (see an
earlier lesson for links to
their resources).
Creating personal
playing cards with the
powers of two on them
(and a 0 on the counter
side) may make it even
quicker for students to
grasp and will help with
assessment.

 The Cisco binary game
can be found here:
http://forums.cisco.com

 The specification covers
conversion of between
binary, hexadecimal and
denary for the denary
values 0-255.

http://forums.cisco.com/CertCom/game/binary_game_page.htm

AQA GCSE Computer Science
Example Scheme of Work
Version 1

22

/CertCom/game/binary_
game_page.htm

2nd Discuss the limitations of binary for humans

 Explain how number systems are created and
present base 10 and base 16 using rising
powers of the base and place holders. Explain
that there is nothing special about base 2, 10
or 16 except that one is necessary for digital
computers and we have ten fingers to count
with.

 Practise ease of conversion between base 10
and base 16 to base 2, leading to an
understanding of why base 16 is commonly
used to represent binary numbers instead of
base 10.

 Practise conversion between binary, denary
and hexadecimal.

 Although it is useful for
students to understand
how to convert directly
to hexadecimal values,
they may also benefit
from knowing that a
nibble can be directly
converted to a
hexadecimal digit.

 Refer to the specimen
exam paper for how
marks are awarded for
number conversion
problems.

3rd Challenge students to write a program in pairs
that accepts user input of a number in denary
and then converts it to base 2 and base 16.
This should be attempted without the number
format handling of the language, i.e. the
students create their own versions of, for
example, the functions den2bin and
den2hex.

 Explain that as binary is the only alphabet
used by computer systems it must be capable
of representing every data type represented in
the language. Introduce definitions of data
and information in the context of a bit pattern
with and without meaning respectively (3.1.1).

 Students could create
unit tests for these
functions using the built
in number conversion
functions.

 Refer to the language
documentation and the
underlying operating
system architecture for
how numerical values
are stored in the
computer (a typical
value would be 4 bytes
for integers and floating

http://forums.cisco.com/CertCom/game/binary_game_page.htm
http://forums.cisco.com/CertCom/game/binary_game_page.htm

AQA GCSE Computer Science
Example Scheme of Work
Version 1

23

 As homework investigate the memory space
needed for real and integer numbers and
characters (or a simplification of these if
required) used by your programming
language.

points and 8 bytes for a
double).

Character Sets 3.1.10 1st Ask students to think of all the characters they
would like to encode and map each one to a
number.

 Look for similarities in the encodings (such as
consecutive numbering through the alphabet).
Examine what characters other than the
alphanumeric ones were encoded. Ensure
students see white space as characters.

 Introduce ASCII and show how it can be
programmed directly (possibly using integer
values as characters) directly in the language.

 Discuss the limitations of using ASCII in
modern (global) computing.

 Provide students with an
online ASCII
http:/www.asciitable.co
m/

 It may help to illustrate
the last point by loading
web pages written using
a non-Latin alphabet,
such as
http:/www.welcome2jap
an.cn/

 Unicode is not on the
specification although it
might be useful to
present it as an
alternative encoding
when discussing the
limitations of ASCII.

Sound 3.1.10 1st If possible play an LP record through analogue
equipment and represent a small example of
this music as a continuous graph (time against
frequency).

 Discuss ways this music could be digitised.

 Students investigate sample rate and bit
depth.

 Exhibit the same digital music encoding at
different sample rates and bit depths.

 Consult the physics
department for any
available resources.

 Simple audio software
such as Audacity can be
used to encode music at
different sample rates
and bit depths although
the difference may not
be perceptible.

2nd Explore the in-built functions of the
programming language for using and
manipulating sound.

 This will obviously vary
according to the
language.

http://www.asciitable.com/
http://www.asciitable.com/
http://www.welcome2japan.cn/
http://www.welcome2japan.cn/

AQA GCSE Computer Science
Example Scheme of Work
Version 1

24

Bitmap Images 3.1.10 1st Before the lesson create paper versions of a
bitmap image using a grid, coloured squares of
paper and a key linking x and y coordinates
with the colour and set groups the task of
‘regaining’ the image.

 Discuss what meta-data needs to be known if
the bitmap is to be decoded.

 Investigate the effects of resolution and colour
depth on the appearance and file size of an
image using digital graphics software.

 Block images work best
for the bitmapped image
task – anything with a lot
of detail will likely not be
recognisable at the
resolution at which the
students will be working.

 Images can be created
by opening an image in
an online photo editor
(Pixlr for example) and
changing the resolution
or canvas size.

AQA GCSE Computer Science
Example Scheme of Work
Version 1

25

Instructions & the
CPU

3.1.8.3,
3.1.8.4

1st Convert a small program to assembly language
(using the students’ language if appropriate).
C compilers such as GCC work well for this
activity.

 Students to examine the assembly for
common forms and also the lack of
programming constructs often used in high
level languages.

 Describe the one to one mapping of assembly
to machine code and reiterate that all data
and instructions are all encoded at the lowest
level in binary.

 Perform group activities mimicking the
working of the CPU (students are given basic
assembler – ADD, STORE, LOAD – and are
assigned jobs as the program counter,
memory, IO and the ALU.

 The AQA AS Computing
text book provides some
examples of a very basic,
generic assembly
language and the role of
registers and the ALU.
This course obviously
does not go into the
detail required for AS
level but it is a good
source of reference.

 The group activity could
be arranged with
students assigned the
various roles and then
only being allowed to
pass messages with the
students they are
connected to.

 The intention here isn’t
for students to have a
firm grasp of assembly
language but instead to
realise that the computer
does not execute the high
level instruction and must
first convert it to a low
level form where
instructions are executed
serially by being fetched
from memory and
executed by the
processor.

 The commands ADD,
STORE and LOAD are
taken from the existing
AQA Computing AS unit
COMP2.

AQA GCSE Computer Science
Example Scheme of Work
Version 1

26

2nd Following on from the CPU activity, discuss
what could speed this process up – lead to
clock speed, number of cores and cache and
alter the activity appropriately.

 Investigate current and legacy CPUs for size [in
terms of number of transistors]. ‘Discover’
Moore’s law.

 An extension to this topic could be to
investigate future limitations of Moore’s law
and alternative models of computation such
as quantum and biological.

Memory 3.1.8.4 1st Boot into the computer’s BIOS and explain
how before the operating system starts the
computer ‘boot straps’ with a comparatively
small number of instructions. These
instructions that are necessary to kick start
computers are stored on ROM.

 If you have old unused hardware available
then you could take some old computers apart
and run bench marking test on them using
differing amounts of RAM.

 It might help to show
inside a PC and show
where ROM can be
found (the difference in
size between a ROM chip
and RAM gives a weak
but visual clue to the
difference in memory
size.

 The bench marking tests
could be informal, such
as recording the time
taken to load four
applications
simultaneously on a
machine with 512MB
and then on a machine
with 2GB with otherwise
equivalent hardware.
Check in advance that

AQA GCSE Computer Science
Example Scheme of Work
Version 1

27

the results are indicative
of RAM size.

2nd Refer back to the previous activity on the CPU
for the role that RAM plays in executing
instructions.

 Explain the terms volatile and non-volatile and
ensure students realise why volatile RAM
cannot be the only memory in a functioning
computer system.

 Explain the use of virtual memory to
overcome insufficient RAM and
data/instructions in non-contiguous, or
completely separate, data stores.

 Students to act out how virtual memory works
in groups.

Secondary Storage 3.1.8.5 1st Simulate the function of optical drives by
getting students to hold up a sequence of
mirrored paper and black paper. With the
lights out shine a torch at the paper and
reflect it on to the ceiling. Work along the line
in time to ‘read’ the bits from the ceiling.

 In a similar fashion to the above, simulate
magnetic storage by getting students to
arrange a series of small magnets in a random
north-south alignment, suspend another light
weight magnet by string and pass it over each
of the underlying magnet, reading off the bit
interpretation as they go.

 Alternatively, and possibly in addition to the
above, show one of the many online videos
showing how optical and magnetic storage

AQA GCSE Computer Science
Example Scheme of Work
Version 1

28

media function such as
http://www.youtube.com/watch?v=f3BNHhfT
svk

2nd Investigate solid state media and compare
read and write speeds (at a basic level) with
typical optical and magnetic media.

 The above could be shown by using a program
that accesses the drives directly and
saves/reads in the same large file, keeping
time as it does so. Students could adapt this
program to provide their own values for
read/write speeds.

 This would require a
prewritten program that
accesses known drives
on the system. The
program could use a
timer to indicate transfer
speeds to and from
these devices.

Input & Output
Devices

3.1.8.2 1st Categorise 20 commonly found IO devices into
input, output or both depending on their
function.

 Investigate the use of novel input and output
devices in the entertainment and mobile
industries. Include reference to concept
devices and discuss how these could
fundamentally change our daily relationship
with computer systems (including the
ubiquitous use of smart phones).

 Students could discuss
their own use of games
and mobile devices and
also access plenty of the
concept videos available
from companies to
discuss the future of our
relationship with these
systems.

Prototyping &
Testing 2

3.1.11.1,
3.1.12

hw Develop a program that interfaces with non-
standard input devices such as the Kinect. This
is another mini-project that students should be
encouraged to approach using prototyping
and continual testing.

 The Kinect is an
expensive optional extra
if the student does not
already have one.
Alternatives could be
webcams using image
recognition software or
the Picoboards for
Scratch (the latter can be

http://www.youtube.com/watch?v=f3BNHhfTsvk
http://www.youtube.com/watch?v=f3BNHhfTsvk

AQA GCSE Computer Science
Example Scheme of Work
Version 1

29

adapted for other
languages).

Algorithms 3.1.9 1st Give students a set of balancing scales and 10
identically sealed containers each with a
different weight. Ask students to arrange the
containers in weight order, keeping a record
of how many times they use the scales.
Students should try and formalise their
approach using flowcharts or pseudocode.

 Explain that algorithms are terminating
solutions to computational problems such as
ordering an array or finding an element in a
sorted list.

 Old film cartridge
containers filled with 1p
coins work well for this
exercise, they can also
be labelled with a code
on their underside to
reveal their weight.

 Students should realise
that they have used and
developed many
algorithms in this course
already.

2nd Ask students to encode their sorting algorithm
and run bench mark tests on them using
random number generation to give a measure
of their efficiency.

 Alternatively, provide students with some
simple algorithms in pseudocode and
flowcharts and ask them to work out their
meaning without translating them to a
programming language.

 Numerical algorithms
are often the simplest to
use in this case as their
meaning is relatively
easy to work out (e.g.
find the highest, get the
average and so on).

 Students are required to
interpret the meaning of
simple algorithms and
also to correct deliberate
mistakes when given the
intended meaning.

Language Libraries 3.1.4 1st Three hours to examine some features of the
particular programming language that will
benefit students. For instance this could be
built in functions for handling user input or
commonly used data structures such as
dictionaries.

 This section is
completely dependent
on the language used.
These three hours can
be used to prepare
students more fully in
how to utilise features of
their language when
completing the

AQA GCSE Computer Science
Example Scheme of Work
Version 1

30

controlled assessments.

2nd See above.

3rd See above.

External
Databases (Text)

3.1.7 1st Discuss why it may be desirable to have data
for a program(s) stored externally to the code.

 Provide students with the code necessary to
read data in and write data to text files.

 Students should write two procedures that
store a string to a text file and also reads the
string in and prints the result.

 In the first lesson ensure
that students can read
and write to an external
file. This may be most
easily done using a
common format such as
CSV or could just be
reading in line-by-line.

2nd Practise with examples such as reading and
saving high scores in a game or creating text
by using random words from the English
language.

 This lesson should
require students to
extract relevant
information from
external files and so
should include basic
parsing (such as each
line containing a name, a
comma and then a high
score and the program
tokenising these results).

 Comprehensive lists of
English words can be
found at
http://wordlist.sourcefor
ge.net/

External
Databases (SQL)

3.1.15,
3.1.15.1

1st Discuss the limitations of a text based (flat-
file) database for more complex data.

 Show, by example, how forming relations
between tables of data can reduce the

 This could be done
graphically with Velcro
records stripped away
from tables and linked

http://wordlist.sourceforge.net/
http://wordlist.sourceforge.net/

AQA GCSE Computer Science
Example Scheme of Work
Version 1

31

amount of data that needs to be stored and
increase the ease of updating data.

 Students should practice creating their own
related tables.

using coloured string and
finally showing how this
is done with primary and
foreign keys.

2nd Provide students with data and work through
examples to build on intuitive notion of
SELECT, FROM and WHERE.

 You may want to recap
on previous work with
Boolean operators at the
start of this lesson.

3rd Frame the previous work in terms of record,
field, table, primary key, query, relationship,
index and search criteria.

 Interface with an SQL database using the
students’ programming language and practise
forming queries, interrogating the database
and iterating over the results.

 SQL queries can be run on
MS Access but you may
want to host an SQL
database elsewhere; at
the time of writing
PythonAnywhere
provides a free MySQL
database that students
could access over a
network.

4th Extend the SQL statements to include ADD
and UPDATE and continue to use a
programming language to interrogate and
update a database.

Networks 3.1.13 1st Students should identify how many
computational devices they own that are not
part of a network (this will probably be mainly
microprocessor driven devices). Discuss the
advantages of networking devices.

 Use long pieces of string with messages
‘hooked’ on them to indicate the difference
between ring, bus and star topologies.

 Analyse the topologies for fault resilience, cost

 Students can create
physical representations
of the different
topologies. The analogy
may well break down
when a ‘switch’ has to
control all messages in a
star network, this will
require further

 It isn’t necessary for
students to have an in
depth knowledge of how
large networks, such as
those used in schools, are
comprised but it may help
them to realise the
composite nature of the
Internet as being a

AQA GCSE Computer Science
Example Scheme of Work
Version 1

32

and ‘speed’. explanation that the
‘switch’ is highly efficient
at routing messages.

network of networks.

Client-Server
Model

3.1.13.1 1st Use route tracing software to analyse the
route an HTTP request takes to a web server;
all students should repeat the request to see if
the routes are all identical.

 Illustrate HTTP in a simplified way to show
how the handshaking process works.

 Ask a school technician to show the servers
running at a school and the jobs that the
different servers perform.

 Before the lesson set up a web server in the
class room using an old computer and show
students how access its web files over the
local network. Illustrate the handshaking
protocol with basic reference to HTTP.

 Most operating systems
(including Microsoft
Windows) have the
ability to trace packages
using route tracing
command line tools.
Check beforehand that
students have the
necessary permissions to
access these tools.

 The web server may be
useful later if the
students are going to
complete the web based
project for their
controlled assessment.

Client-Side
Programming

3.1.13.2,
3.1.13.1

1st Provide students with HTML files including
forms that require user input.

 Students explore the use of HTML forms and
customise the templates they have been
given.

 This assumes some
familiarity with
HTML/CSS – if students
are new to HTML/CSS
then use an online
tutorial (such as
W3Schools) to cover the
basics.

2nd Give students examples of JavaScript and get
students to validate input and alter the
HTML/CSS if the input is invalid.

 JavaScript is so universal
as the language of client-
side scripting that it
makes sense to

AQA GCSE Computer Science
Example Scheme of Work
Version 1

33

introduce it in this
context even if students
haven’t had any previous
experience of it.
Codecademy.com
provides an excellent
interactive tutorial
approach to learning the
basics of JavaScript.

3rd Further practice on user validation.

 Explain the concept of robustness and how
validating user input is a basic but essential
form of helping to ensure programs maintain
correct performance.

 Extend the examples
from the previous two
lessons and encourage
students to test their
input fields with out of
range data, missing data
or incorrectly typed data
to ensure they are as
robust as possible.

 You could build on the
concept of robustness
during the next extended
homework which will
involve user input
through to database
interrogation.

Server-Side
Programming

3.1.13.2,
3.1.15.2

1st Allow students shell access to a web server
and show examples of how server scripts can
respond dynamically to requests, possibly
requiring database interrogation.

 A basic start is to use a server-script to embed
the current time in milliseconds in a webpage.

 Extend these tasks over the next four lessons
to include scripts that interrogate and update
a database and manipulate the returned
HTML pages accordingly.

 If your students intend to take the controlled
assessment in web development they will
probably also want to cover the use of cookies

 Many languages can be
used for server-side
processing and students
shouldn’t necessarily
have to change to a
language such as PHP to
complete these tasks.

 In order to complete
these tasks students will
need privileged access to
a web server running the
necessary language
modules.

 Consult with the network
technicians to decide the
best way to create and
manage a web server.
This doesn’t need to be a
high-end machine and for
the needs of this course
an old computer sitting in
the corner of the
classroom should suffice.

http://www.codecademy.com/

AQA GCSE Computer Science
Example Scheme of Work
Version 1

34

or sessions to enable restricted access and
access to previous states.

 The support materials
for the specimen
controlled assessment
could be used with both
this and the previous
lessons in client-side
programming.

2nd See above

3rd See above

4th See above

Prototyping &
Testing 3

3.1.11.1,
3.1.12

hw Provide students with the HTML/CSS
framework for them to work in and an empty
external SQL database and give them a brief.

 Encourage an iterative approach to developing
a dynamic website that includes unit testing
throughout.

 The final suggested
extended homework task
builds on the previous
work on SQL databases
and client and server
side programming.
Students could be given
a brief and an HTML/CSS
framework (the
specimen controlled
assessment materials
are ideal).

External Code
Sources

3.1.14 1st Motivate the use of external code sources
through web based libraries such as external
fonts, scripting libraries and similar.

 Discuss and analyse when students have used
external code sources throughout this course
and the advantages it provides along with
possible problems.

 Fonts can be loaded into
a web page using the
src attribute in CSS.

 JQuery could be
downloaded and used in
a web page to enhance
the work already done
on client side
programming.

AQA GCSE Computer Science
Example Scheme of Work
Version 1

35

2nd Students to return to their dynamic websites
and integrate external tools such as Google
Maps, reference to external fonts and so on.

 Students will have to be
introduced to the Google
APIs, this is a good
starting point:
http://designshack.net/a
rticles/html/embedding-
google-maps-into-a-
web-page-a-beginners-
guide/

Computer
Technology in
Society

3.1.8.1,
3.1.8.2
3.1.16

1st Introduce the concepts of safety critical and
mission critical software and ask students to
compile of list of such software.

 Use a current issue in computing that requires
a significant amount of hardware and
processing, an example might be the plan to
hold a national database on every Internet
users’ emails and web browsing history or the
use of biometric checking at the UK border.

 Discuss the hardware and processing
necessary to support such as system.

 Further discuss the need for reliability and
robustness by discussing the implications for
users if errors appeared in this system.

 Scanning journalistic
articles prior to this
lesson will help inform
the topic.

2nd Give a brief introduction to the history of GPS
and its modern civilian use.

 Students to critically discuss the reliance on
GPS on some areas civilian life and the
potential consequences if this signal was to be
turned off.

 Encourage students to
form evaluative
judgements on the
impact of GPS and any
related issues.

http://designshack.net/articles/html/embedding-google-maps-into-a-web-page-a-beginners-guide/
http://designshack.net/articles/html/embedding-google-maps-into-a-web-page-a-beginners-guide/
http://designshack.net/articles/html/embedding-google-maps-into-a-web-page-a-beginners-guide/
http://designshack.net/articles/html/embedding-google-maps-into-a-web-page-a-beginners-guide/
http://designshack.net/articles/html/embedding-google-maps-into-a-web-page-a-beginners-guide/

